
M4: A Visualization-Oriented Time Series Data Aggregation

Uwe Jugel, Zbigniew Jerzak,
Gregor Hackenbroich

SAP AG
Chemnitzer Str. 48, 01187 Dresden, Germany

{firstname}.{lastname}@sap.com

Volker Markl
Technische Universität Berlin

Straße des 17. Juni 135
10623 Berlin, Germany

volker.markl@tu-berlin.de

ABSTRACT
Visual analysis of high-volume time series data is ubiquitous
in many industries, including finance, banking, and discrete
manufacturing. Contemporary, RDBMS-based systems for
visualization of high-volume time series data have difficulty
to cope with the hard latency requirements and high inges-
tion rates of interactive visualizations. Existing solutions
for lowering the volume of time series data disregard the se-
mantics of visualizations and result in visualization errors.

In this work, we introduce M4, an aggregation-based time
series dimensionality reduction technique that provides error-
free visualizations at high data reduction rates. Focusing on
line charts, as the predominant form of time series visualiza-
tion, we explain in detail the drawbacks of existing data re-
duction techniques and how our approach outperforms state
of the art, by respecting the process of line rasterization.

We describe how to incorporate aggregation-based dimen-
sionality reduction at the query level in a visualization-
driven query rewriting system. Our approach is generic and
applicable to any visualization system that uses an RDBMS
as data source. Using real world data sets from high tech
manufacturing, stock markets, and sports analytics domains
we demonstrate that our visualization-oriented data aggre-
gation can reduce data volumes by up to two orders of mag-
nitude, while preserving perfect visualizations.

Keywords: Relational databases, Query rewriting,
Dimensionality reduction, Line rasterization

1. INTRODUCTION
Enterprises are gathering petabytes of data in public and
private clouds, with time series data originating from var-
ious sources, including sensor networks [15], smart grids,
financial markets, and many more. Large volumes of col-
lected time series data are subsequently stored in relational
databases. Relational databases, in turn, are used as back-
end by visual data analysis tools. Data analysts interact
with the visualizations and their actions are transformed by

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 10
Copyright 2014 VLDB Endowment 2150-8097/14/06.

the visual data analysis tools into a series of queries that are
issued against the relational database, holding the original
time series data. In state-of-the-art visual analytics tools,
e.g., Tableau, QlikView, SAP Lumira, etc., such queries are
issued to the database without considering the cardinality
of the query result. However, when reading data from high-
volume data sources, result sets often contain millions of
rows. This leads to very high bandwidth consumption be-
tween the visualization system and the database.

Let us consider the following example. SAP customers in
high tech manufacturing report that it is not uncommon for
100 engineers to simultaneously access a global database,
containing equipment monitoring data. Such monitoring
data originates from sensors embedded within the high tech
manufacturing machines. The common reporting frequency
for such embedded sensors is 100Hz [15]. An engineer usu-
ally accesses data which spans the last 12 hours for any given
sensor. If the visualization system uses a non-aggregating
query, such as

SELECT time,value FROM sensor WHERE time > NOW()-12*3600

to retrieve the necessary data from the database, the total
amount of data to transfer is 100users · (12 · 3600)seconds ·
100Hz = 432 million rows, i.e., over 4 million rows per visu-
alization client. Assuming a wire size of 60 bytes per row,
the total amount of data that needs to be transferred from
the database to all visualization clients is almost 26GB. Each
user will have to wait for nearly 260MB to be loaded to the
visualization client before he or she can examine a chart,
showing the sensor signal.

With the proliferation of high frequency data sources and
real-time visualization systems, the above concurrent-usage
pattern and its implications are observed by SAP not only in
high tech manufacturing, but across a constantly increasing
number of industries, including sports analytics [22], finance,
and utilities.

The final visualization, which is presented to an engineer,
is inherently restricted to displaying the retrieved data using
width × height pixels - the area of the resulting chart. This
implies that a visualization system must perform a data re-
duction, transforming and projecting the received result set
onto a width × height raster. This reduction is performed
implicitly by the visualization client and is applied to all re-
sult sets, regardless of the number of rows they contain. The
goal of this paper is to leverage this fundamental observa-
tion and apply an appropriate data reduction already at the
query level within the database. As illustrated in Figure 1,
the goal is to rewrite a visualization-related query Q using a
data reduction operator MR, such that the resulting query

797

R
D

B
M

S
QR= MR(Q)

Q = SELECT t,v FROM T

100k tuples (in 20s)

10k tuples (in 2s)

a)

b)
vis1
==
vis2

Figure 1: Time series visualization: a) based on
a unbounded query without reduction; b) using
visualization-oriented reduction at the query level.

QR produces a much smaller result set, without impairing
the resulting visualization. Significantly reduced data vol-
umes mitigate high network bandwidth requirements and
lead to shorter waiting times for the users of the visuali-
zation system. Note that the goal of our approach is not
to compute images inside the database, since this prevents
client-side interaction with the data. Instead, our system
should select subsets of the original result set that can be
consumed transparently by any visualization client.

To achieve these goals, we present the following contribu-
tions. We first propose a visualization-driven query rewrit-
ing technique, relying on relational operators and parame-
trized with width and height of the desired visualization.
Secondly, focusing on the detailed semantics of line charts,
as the predominant form of time series visualization, we
develop a visualization-driven aggregation that only selects
data points that are necessary to draw the correct visuali-
zation of the complete underlying data. Thereby, we model
the visualization process by selecting for every time interval,
which corresponds to a pixel column in the final visualiza-
tion, the tuples with the minimum and maximum value, and
additionally the first and last tuples, having the minimum
and maximum timestamp in that pixel column. To best of
our knowledge, there is no application or previous discussion
of this data reduction model in the literature, even though
it provides superior results for the purpose of line visual-
izations. In this paper, we remedy this shortcoming and
explain the importance of the chosen min, max, and the ad-
ditional first and last tuples, in context of line rasterization.
We prove that the pixel-column-wise selection of these four
tuples is required to ensure an error-free two-color (binary)
line visualization. Furthermore, we denote this model as
M4 aggregation and discuss and evaluate it for line visual-
izations in general, including anti-aliased (non-binary) line
visualizations.

Our approach significantly differs from the state-of-the-art
time series dimensionality reduction techniques [11], which
are often based on line simplification algorithms [25], such
as the Ramer-Douglas-Peucker [6, 14] and the Visvalingam-
Whyatt algorithms [26]. These algorithms are computation-
ally expensive O(n log(n)) [19] and disregard the projection
of the line to the width × height pixels of the final visualiza-
tion. In contrast, our approach has the complexity of O(n)
and provides perfect visualizations.

Relying only on relational operators for the data reduc-
tion, our visualization-driven query rewriting is generic and
can be applied to any RDBMS system. We demonstrate the
improvements of our techniques in a real world setting, us-
ing prototype implementations of our algorithms on top of
SAP HANA [10] and Postgres (postgres.org).

The remainder of the paper is structured as follows. In
Section 2, we present our system architecture and describe
our query rewriting approach. In Section 3, we discuss our
focus on line charts. Thereafter, in Section 4, we provide the
details of our visualization-oriented data aggregation model
and discuss the proposed M4 aggregation. After describing
the drawbacks of existing time series dimensionality reduc-
tion techniques in Section 5, we compare our approach with
these techniques and evaluate the improvements regarding
query execution time, data efficiency, and visualization qual-
ity in Section 6. In Section 7, we discuss additional related
work, and we eventually conclude with Section 8.

2. QUERY REWRITING
In this section, we describe our query rewriting approach to
facilitate data reduction for visualization systems that rely
on relational data sources.

To incorporate operators for data reduction, an original
query to a high-volume time series data source needs to be
rewritten. The rewriting can either be done directly by the
visualization client or by an additional query interface to
the relational database management system (RDBMS). In-
dependent of where the query is rewritten, the actual data
reduction will always be computed by the database itself.
The following Figure 2 illustrates this query rewriting and
data-centric dimensionality reduction approach.

Visualization
Client

selected time range

Query RewriterRDBMS

data-reduced query result

visualization
parameters

query

reduction
querydata

data reduction

data flow

+

Figure 2: Visualization system with query rewriter.

Query Definition. The definition of a query starts at
the visualization client, where the user first selects a time se-
ries data source, a time range, and the type of visualization.
Data source and time range usually define the main parts
of the original query. Most queries, issued by our visualiza-
tion clients, are of the form SELECT time , value FROM series

WHERE time > t1 AND time < t2. But practically, the visu-
alization client can define an arbitrary relational query, as
long as the result is a valid time series relation.

Time Series Data Model. We regard time series as
binary relations T (t, v) with two numeric attributes: times-
tamp t ∈ R and value v ∈ R. Any other relation that has
at least two numerical attributes can be easily projected
to this model. For example, given a relation X(a, b, c),
and knowing that a is a numerical timestamp and b and
c are also numerical values, we can derive two separate time
series relations by means of projection and renaming, i.e.,
Tb(t, v) = πt←a,v←b(X) and Tc(t, v) = πt←a,v←c(X).

Visualization Parameters. In addition to the query,
the visualization client must also provide the visualization
parameters width w and height h, i.e., the exact pixel res-
olution of the desired visualization. Determining the exact
pixel resolution is very important, as we will later show in
Section 6. For most visualizations the user-selected chart
size (wchart × hchart) is different from the actual resolution
(w × h) of the canvas that is used for rasterization of the
geometry. Figure 3 depicts this difference using a schematic
example of a line chart that occupies 14×11 screen pixels in

798

http://postgres.org

wchart = 14

h
 =

 7

h
ch

ar
t =

 1
1

h

w = 9

xstart = fx(tstart)

xend = fx(tend)

ymin = fy(vmin)

ymax = fy(vmax)

x-axis pixels

y-
ax

is
 p

ix
e

ls

Canvas

P
adding

Padding

P
adding

Figure 3: Determining the visualization parameters.

total, but only uses 9×7 pixels for drawing the actual lines.
When deriving the data reduction operators from these vi-
sualization parameters w and h, our query rewriter assumes
the following.

Given the width w and height h of the canvas area, the
visualization client uses the following geometric transforma-
tion functions x = fx(t) and y = fy(v), x, y ∈ R to project
each timestamp t and value v to the visualization’s coordi-
nate system.

fx(t) = w · (t− tstart)/(tend − tstart)
fy(v) = h · (v − vmin)/(vmax − vmin)

(1)

The projected real-valued time series data is then traversed
by the drawing routines of the visualization client to derive
the discrete pixels. We assume the projected minimum and
maximum timestamps and values of the selected time series
(tstart, tend, vmin, vmax) match exactly with the real-valued
left, right, bottom, and top boundaries (xstart, xend, ymin,
ymax) of the canvas area, i.e., we assume that the drawing
routines do not apply an additional vertical or horizontal
translation or rescaling operation to data. In our evalua-
tion, in Section 6, we will discuss potential issues of these
assumptions.

Query Rewriting. In our system, the query rewriter
handles all visualization-related queries. Therefore, it re-
ceives a query Q and the additional visualization parameters
width w and height h. The goal of the rewriting is to apply
an additional data reduction to those queries, whose result
set size exceeds a certain limit. The result of the rewrit-
ing process is exemplified in Figure 4a. In general, such a
rewritten query QR contains the following subqueries.

1) The original query Q,

2) a cardinality query QC on Q,

3) a cardinality check (conditional execution),

3a) to either use the result of Q directly, or

3b) to execute an additional data reduction QD on Q.

Our system composes all relevant subqueries into one single
SQL query to ensure a fast query execution. Thereby, we
firstly leverage that databases are able to reuse results of
subqueries, and secondly assume that the execution time of
counting the number of rows selected by the original query
is negligibly small, compared to the actual query execu-
tion time. The two properties are true for most modern

a) Conditional query to apply PAA data reduction

WITH Q AS (SELECT t,v FROM sensors WHERE
 id = 1 AND t >= $t1 AND t <= $t2),
 QC AS (SELECT count(*) c FROM Q)
SELECT * FROM Q WHERE (SELECT c FROM QC) <= 800
UNION
SELECT * FROM (
 SELECT min(t),avg(v) FROM Q
 GROUP BY round(200*(t-$t1)/($t2-$t1))
) AS QD WHERE (SELECT c FROM QC) > 800

1) original query Q

2) cardinality query QC
3a) use Q if low card.

3b) use QD if high card.

reduction query QD:
compute aggregates
for each pixel-column

b) resulting image c) expected image

Figure 4: Query rewriting result and visualization.

databases and the first facilitates the second. In practice,
subquery reuse can be achieved via common table expression
[23], as defined by the SQL 1999 standard.

The SQL example in Figure 4a uses a width of w = 200
pixels, a cardinality limit of 4 · w = 800 tuples, and it ap-
plies a data reduction using a simple piece-wise aggregate
approximation (PAA) [18] – a naive measure for time se-
ries dimensionality reduction. The corresponding visualiza-
tion is a line chart, for which we only consider the width w
to define the PAA parameters. For such aggregation-based
data reduction operators, we align the time intervals with
the pixel columns to model the process of visualization at
the query level. We use the same geometric transformation
x = fx(t), as is used by the visualization client and round
the resulting value to a discrete group key between 0 and
w = 200, i.e., we use the following grouping function.

fg(t) = round(w · (t− tstart)/(tend − tstart)) (2)

Figure 4b shows the resulting image that the visualization
client derived from the reduced data, and Figure 4c shows
the resulting image derived from the raw time series data.
The averaging aggregation function significantly changes the
actual shape of the time series. In Section 4, we will discuss
the utility of different types of aggregation functions for the
purpose of visualization-oriented data reduction. For now,
let us focus on the overall structure of the query. Note that
we model the described conditional execution using a union
of the different subqueries (3a) and (3b) that have contradic-
tory predicates based on the cardinality limit. This allows
us to execute any user-defined query logic of the query Q
only once. The execution of the query Q and the data re-
duction QD is all covered by this single query, such that no
high-volume data needs to be copied to an additional data
reduction or compression component.

3. TIME SERIES VISUALIZATION
In this work, we focus on line charts of high-volume time
series data. The following short digression on time series
visualization will explain our motivation.

There exist dozens of ways to visualize time series data,
but only a few of them work well with large data volumes.
Bar charts, pie charts, and similar simple chart types con-
sume too much space per displayed element [8]. The most
common charts that suffice for high-volume data are shown
in Figure 5. These are line charts and scatter plots where a

799

single data point can be presented using only a few pixels.
Regarding space efficiency, these two simple chart types are
only surpassed by space-filling approaches [17]. However,
the most ubiquitous visualization is the line chart; found
in spreadsheet applications, data analytics tools, charting
frameworks, system monitoring applications, and many more.

space filling visualization

timevaluetime

va
lu

e

va
lu

e

time

scatter plotline chart

Figure 5: Common time series visualizations.

To achieve an efficient data reduction, we need to consider
how a visualization is created from the underlying data. For
scatter plots this process requires to shift, scale and round
the time series relation T (t, v) with t, v ∈ R to a relation
of discrete pixels V (x, y) with x ∈ [1, w], y ∈ [1, h]. As al-
ready described in Section 2, we can reuse this geometric
transformation for data reduction. Space-filling visualiza-
tions are similar. They also project a time series T (t, v)
to a sequence of discrete values V (i, l) with i ∈ [1, w · h],
l ∈ [0, 255], where i is the position in the sequence and l is
the luminance to be used.

An appropriate data reduction for scatter plots is a two-
dimensional grouping of the time series, having a one-to-one
mapping of pixels to groups. As a result, scatter plots (and
also space-filling approaches) require selecting up to w · h
tuples from the original data to produce correct visualiza-
tions. This may add up to several hundred thousand tuples,
especially when considering today’s high screen resolutions.
The corresponding data reduction potential is limited.

This is not the case for line charts of high-volume time
series data. In Section 4.4, we will show that there is an
upper bound of 4 ·w required tuples for two-color line charts.

4. DATA REDUCTION OPERATORS
The goal of our query rewriting system is to apply visuali-
zation-oriented data reduction in the database by means of
relational operators, i.e., using data aggregation. In the lit-
erature, we did not find any comprehensive discussion that
describes the effects of data aggregation on rasterized line
visualizations. Most time series dimensionality reduction
techniques [11] are too generic and are not designed specifi-
cally for line visualizations. We will now remedy this short-
coming and describe several classes of operators that we con-
sidered and evaluated for data reduction and discuss their
utility for line visualizations.

4.1 Visualization-Oriented Data Aggregation
As already described in Section 2, we model data reduction
using a time-based grouping, aligning the time intervals with
the pixel columns of the visualization. For each interval
and thus for each pixel column we can compute aggregated
values using one of the following options.

Normal Aggregation. A simple form of data reduction
is to compute an aggregated value and an aggregated times-
tamp using the aggregation functions min, max, avg, me-
dian, medoid, or mode. The resulting data reduction queries

on a time series relation T (t, v), using a (horizontal) group-
ing function fg and two aggregation functions ft and fv can
be defined in relational algebra:

fg(t)Gft(t),fv(v)(T) (3)

We already used this simple form of aggregation in our query
rewriting example (Figure 4), selecting a minimum (first)
timestamp and an average value to model a piece-wise ag-
gregate approximation (PAA) [18]. But any averaging func-
tion, i.e., using avg, median, medoid, or mode, will signifi-
cantly distort the actual shape of the time series (see Figure
4b vs. 4c). To preserve the shape of the time series, we
need to focus on the extrema of each group. For example,
we want to select those tuples that have the minimum value
vmin or maximum value vmax per group. Unfortunately, the
grouping semantics of the relational algebra does not allow
selection of non-aggregated values.

Value Preserving Aggregation. To select the corre-
sponding tuples, based on the computed aggregated values,
we need to join the aggregated data again with the underly-
ing time series. Therefore, we replace one of the aggregation
functions with the time-based group key (result of fg) and
join the aggregation results with T on that group key and
on the aggregated value or timestamp. In particular, the
following query

πt,v(T ./ fg(t)=k∧v=vg (fg(t)Gk←fg(t),vg←fv(v)(T))) (4)

selects the corresponding timestamps t for each aggregated
value vg = fv(v), and the following query

πt,v(T ./ fg(t)=k∧t=tg (fg(t)Gk←fg(t),tg←ft(t)(T))) (5)

selects the corresponding values v for each aggregated times-
tamp tg = ft(t). Note that these queries may select more
than one tuple per group, if there are duplicate values or
timestamps per group. However, in most of our high-volume
time series data sources, timestamps are unique and the val-
ues are real-valued numbers with multiple decimals places,
such that the average number of duplicates is less than one
percent of the overall data. In scenarios with more signifi-
cant duplicate ratios, the described queries (4) and (5) need
to be encased with additional compensating aggregation op-
erators to ensure appropriate data reduction rates.

Sampling. Using the value preserving aggregation we
can express simple forms of systematic sampling, e.g., se-
lecting every first tuple per group using the following query.

πt,v(T ./ fg(t)=k∧t=tmin
(fg(t)Gk←fg(t),tmin

←min(t)(T)))

For query level random sampling, we can also combine the
value preserving aggregation with the SQL 2003 concept
of the TABLESAMPLE or a selection operator involving
a random() function. While this allows us to conduct data
sampling inside the database, we will show in our evalua-
tion that these simple forms sampling are not appropriate
for line visualizations.

Composite Aggregations. In addition to the described
queries (3), (4), and (5) that yield a single aggregated value
per group, we also consider composite queries with several
aggregated values per group. In relational algebra, we can
model such queries as a union of two or more aggregating sub
queries that use the same grouping function. Alternatively,
we can modify the queries (4) and (5) to select multiple
aggregated values or timestamps per group before joining
again with the base relation. We then need to combine the

800

a) value-preserving MinMax aggregation query

SELECT t,v FROM Q JOIN
(SELECT round($w*(t-$t1)/($t2-$t1)) as k, -- define key

min(v) as v_min, max(v) as v_max -- get min,max
FROM Q GROUP BY k) as QA -- group by k

ON k = round($w*(t-$t1)/($t2-$t1)) -- join on k
AND (v = v_min OR v = v_max) -- &(min|max)

b) resulting image c) expected image

Figure 6: MinMax query and resulting visualization.

join predicates, such that all different aggregated values or
timestamps are correlated to either their missing timestamp
or their missing value. The following MinMax aggregation
will provide an example of a composite aggregation.

MinMax Aggregation. To preserve the shape of a time
series, the first intuition is to group-wise select the vertical
extrema, which we denote as min and max tuples. This is a
composite value-preserving aggregation, exemplified by the
SQL query in Figure 6a. The query projects existing times-
tamps and values from a time series relation Q, after joining
it with the aggregation results QA. Q is defined by an orig-
inal query, as already shown in Figure 4a. The group keys
k are based on the rounded results of the (horizontal) geo-
metric transformation of Q to the visualization’s coordinate
system. As stated before in Section 2, it is important that
this geometric transformation is exactly the same transfor-
mation as conducted by visualization client, before passing
the rescaled time series data to the line drawing routines for
rasterization. Finally, the join of QA with Q is based on the
group key k and on matching the values v in Q either with
vmin or vmax from QA.

Figure 6b shows the resulting visualization and we now
observe that it closely matches the expected visualization
of the raw data 6c. In Section 4.3, we later discuss the
remaining pixel errors; indicated by arrows in Figure 6b.

4.2 The M4 Aggregation
The composite MinMax aggregation focuses on the vertical
extrema of each pixel column, i.e., of each corresponding
time span. There are already existing approaches for se-
lecting extrema for the purpose of data reduction and data
analysis [12]. But most of them only partially consider the
implications for data visualization and neglect the final pro-
jection of the data to discrete screen pixels.

A line chart that is based on a reduced data set, will al-
ways omit lines that would have connected the not selected
tuples, and it will always add new approximating lines to
bridge the not selected tuples between two consecutive se-
lected tuples. The resulting errors (in the real-valued vi-
sualization space) are significantly reduced by the final dis-
cretization process of the drawing routines. This effect is
the underlying principle of the proposed visualization-driven
data reduction.

Intuitively, one may expect that selecting the minimum
and maximum values, i.e., the tuples (tbottom, min(v)) and
(ttop, max(v)), from exactly w groups, is sufficient to derive
a correct line visualization. This intuition is elusive, and this

a) value-preserving M4 aggregation query

SELECT t,v FROM Q JOIN
(SELECT round($w*(t-$t1)/($t2-$t1)) as k, --define key

min(v) as v_min, max(v) as v_max, --get min,max
min(t) as t_min, max(t) as t_max --get 1st,last
FROM Q GROUP BY k) as QA --group by k

ON k = round($w*(t-$t1)/($t2-$t1)) --join on k
AND (v = v_min OR v = v_max OR --&(min|max|

t = t_min OR t = t_max) -- 1st|last)

b) resulting image == expected image

Figure 7: M4 query and resulting visualization.

form of data reduction – provided by the MinMax aggrega-
tion – does not guarantee an error-free line visualization of
the time series. It ignores the important first and last tuples
of the each group. We now introduce the M4 aggregation
that additionally selects these first and last tuples (min(t),
vfirst) and (max(t), vlast). In Section 4.3, we then discuss
how M4 surpasses the MinMax intuition.

M4 Aggregation. M4 is a composite value-preserving
aggregation (see Section 4.1) that groups a time series re-
lation into w equidistant time spans, such that each group
exactly corresponds to a pixel column in the visualization.
For each group, M4 then computes the aggregates min(v),
max(v), min(t), and max(t) – hence the name M4 – and
then joins the aggregated data with the original time se-
ries, to add the missing timestamps tbottom and ttop and the
missing values vfirst and vlast.

In Figure 7a, we present an example query using the M4
aggregation. This SQL query is very similar to the MinMax
query in Figure 6a, adding only the min(t) and max(t) ag-
gregations and the additional join predicates based on the
first and last timestamps tmin and tmax. Figure 7b depicts
the resulting visualization, which is now equal to the visu-
alization of the unreduced underlying time series.

Complexity of M4. The required grouping and the
computation of the aggregated values can be computed in
O(n) for the n tuples of the base relation Q. The subse-
quent equi-join of the aggregated values with Q requires to
match the n tuples in Q with 4 ·w aggregated tuples, using
a hash-join in O(n+ 4 ·w), but w does not depend on n and
is inherently limited by physical display resolutions, e.g.,
w = 5120 pixels for latest WHXGA displays. Therefore, the
described M4 aggregation of has complexity of O(n).

4.3 Aggregation-Related Pixel Errors
In Figure 8 we compare three line visualizations: a) the
schematic line visualization a time series Q, b) the visuali-
zation of MinMax(Q), and c) the visualization of M4(Q).
MinMax(Q) does not select the first and last tuples per
pixel column, causing several types of line drawing errors.

In Figure 8b, the pixel (3,3) is not set correctly, since nei-
ther the start nor the end tuple of the corresponding line are
included in the reduced data set. This kind of missing line
error E1 is distinctly visible with time series that have a very
heterogeneous time distribution, i.e., notable gaps, resulting
in pixel columns not holding any data (see pixel column 3
in Figure 8b). A missing line error is often exacerbated by

801

a) baseline vis. of Q

1 2 3 4

b) vis. of MinMax(Q) c) vis. of M4(Q)

1

2

3

E3

E1

E2

inter-
group
line

inner-
group
linesbackground pixels

fore-
ground
pixels

Figure 8: MinMax-related visualization error.

an additional false line error E2, as the line drawing still
requires to connect two tuples to bridge the empty pixel
column. Furthermore, both error types may also occur in
neighboring pixel columns, because the inner-column lines
do not always represent the complete set of pixels of a col-
umn. Additional inter-column pixels – below or above the
inner-column pixels – can be derived from the inter-column
lines. This will again cause missing or additional pixels if the
reduced data set does not contain the correct tuples for the
correct inter-column lines. In Figure 8b, the MinMax ag-
gregation causes such an error E3 by setting the undesired
pixel (1,2), derived from the false line between the maxi-
mum tuple in the first pixel column and the (consecutive)
maximum tuple in the second pixel column. Note that these
errors are independent of the resolution of the desired raster
image, i.e., of the chosen number of groups. If we do not ex-
plicitly select the first and last tuples, we cannot guarantee
that all tuples for drawing the correct inter-column lines are
included.

4.4 The M4 Upper Bound
Based on the observation of the described errors, the ques-
tion arises if selecting only the four extremum tuples for each
pixel column guarantees an error-free visualization. In the
following, we prove the existence of an upper bound of tu-
ples necessary for an error-free, two-color line visualization.

Definition 1. A width-based grouping of an arbitrary
time series relation T (t, v) into w equidistant groups, de-
noted as G(T) = (B1, B2, ..., Bw), is derived from T using
the surjective grouping function i = fg(t) = round(w · (t−
tstart)/(tend− tstart)) to assign any tuple of T to the groups
Bi. A tuple (t, v) is assigned to Bi if fg(t) = i.

Definition 2. A width-based M4 aggregation GM4(T)
selects the extremum tuples (tbottomi , vmini), (ttopi , vmaxi),
(tmini , vfirsti), and (tmax, vlasti) from each Bi of G(T).

Definition 3. A visualization relation V (x, y) with the

attributes x ∈ N[1,w] and y ∈ N[1,h] contains all foreground
pixels (x, y), representing all (black) pixels of all rasterized
lines. V (x, y) contains none of the remaining (white) back-

ground pixels in N[1,w] × N[1,h].

Definition 4. A line visualization operator viswh(T)→
V defines, for all tuples (t, v) in T , the corresponding fore-
ground pixels (x, y) in V .

Thereby viswh first uses the linear transformation functions
fx and fy to rescale all tuples in T to the coordinate system
R[1,w] × R[1,h] (see Section 2) and then tests for all discrete
pixels and all non-discrete lines – defined by the consecutive
tuples of the transformed time series – if a pixel is on the
line or not on the line. For brevity, we omit a detailed de-

inner-column pixels
depend only on top &
bottom pixels, derived
from min/max tuples

all non-inner-
column pixels
can be derived
from first and
last tuples

inner-column
pixel

inter-column
pixels

first and last tuples
min and max tuples

Figure 9: Illustration of the Theorem 1.

scription of line rasterization [2, 4], and assume the following
two properties to be true.

Lemma 1. A rasterized line has no gaps.

Lemma 2. When rasterizing an inner-column line, no fore-
ground pixels are set outside of the pixel column.

Theorem 1. Any two-color line visualization of an arbi-
trary time series T is equal to the two-color line visu-
alization of a time series T ′ that contains at least the
four extrema of all groups of the width-based grouping
of T , i.e., viswh(GM4(T)) = viswh(T).

Figure 9 illustrates the reasoning of Theorem 1.

Proof. Suppose a visualization relation V = viswh(T) rep-
resents the pixels of a two-color line visualization of an ar-
bitrary time series T . Suppose a tuple can only be in one
of the groups B1 to Bw that are defined by G(T) and that
corresponds to the pixel columns. Then there is only one
pair of consecutive tuples pj ∈ Bi and pj+1 ∈ Bi+1, i.e.,
only one inter-column line between each pair of consecutive
groups Bi and Bi+1. But then, all other lines defined by
the remaining pairs of consecutive tuples in T must define
inner-column lines.

As of Lemmas 1 and 2, all inner-column pixels can be de-
fined from knowing the top and bottom inner-column pixels
of each column. Furthermore, since fx and fy are linear
transformations, we can derive these top and bottom pixels
of each column from the min and max tuples (tbottomi , vmini),
(ttopi , vmaxi) for each group Bi. The remaining inter-column
pixels can be derived from all inter-column lines. Since there
is only one inter-column line pjpj+1 between each pair of
consecutive groups Bi and Bi+1, the tuple pj ∈ Bi is the
last tuple (tmaxivlasti) of Bi and pj+1 ∈ Bi+1 is the first
tuple (tmini+1 , vfirsti+1) of Bi+1.

Consequently, all pixels of the visualization relation V can
be derived from the tuples (tbottomi , vmini), (ttopi , vmaxi),
(tmaxivlasti), (tmini , vfirsti) of each group Bi, i.e., V =
viswh(GM4(T)) = viswh(T). �

Using Theorem 1, we can moreover derive

Theorem 2. There exists an error-free two-color line vi-
sualization of an arbitrary time series T , based on a
subset T ′ of T , with |T ′| ≤ 4 · w.

No matter how big T is, selecting the correct 4·w tuples from
T allows us to create a perfect visualization of T . Clearly, for
the purpose of line visualization, M4 queries provide data-
efficient, predictable data reduction.

5. TIME SERIES DATA REDUCTION
In Section 4, we discussed averaging, systematic sampling
and random sampling as measures for data reduction. They
provide some utility for time series dimensionality reduction

802

in general, and may also provide useful data reduction for
certain types of visualizations. However, for rasterized line
visualizations, we have now proven the necessity of selecting
the correct min, max, first, and last tuples. As a result, any
averaging, systematic, or random approach will fail to obtain
good results for line visualizations, if it does not ensure that
these important tuples are included.

Compared to our approach, the most competitive appro-
aches, as found in the literature [11], are times series dimen-
sionality reduction techniques based on line simplification.
For example, Fu et al. reduce a time series based on percep-
tually important points (PIP) [12]. Such approaches usually
apply a distance measure defined between each three con-
secutive points of a line, and try to minimize this measure ε
for a selected data reduction rate. This min− ε problem is
complemented with a min-# problem, where the minimum
number of points needs to be found for a defined distance
ε. However, due to the O(n2) worst case complexity [19]
of this optimization problem, there are many heuristic algo-
rithms for line simplification. The fastest class of algorithms
works sequentially inO(n), processing every point of the line
only once. The two other main classes have complexity of
O(n log(n)) and either merge points until some error crite-
rion is met (bottom up) or split the line (top down), starting
with an initial approximating line, defined by the first and
last points of the original line. The latter approaches usu-
ally provide a much better approximation of the original line
[25]. Our aggregation-based data reduction, including M4,
has a complexity of O(n).

Approximation Quality. To determine the approxima-
tion quality of a derived time series, most time series di-
mensionality reduction techniques use a geometric distance
measure, defined between the segments of the approximat-
ing line and the (removed) points of the original line.

The most common measure is the Euclidean (perpendicu-
lar) distance, as shown in Figure 10a), which is the shortest
distance of a point pk to a line segment pipj . Other com-
monly applied distance measures are the area of the triangle
(pi, pk, pj) (Figure 10b) or the vertical distance of pk to pipj
(Figure 10c).

original line approximating line

b) triangle
 area

a) perpendicular
 distance

c) vertical
 distance

Figure 10: Distance measures for line simplification.

However, when visualizing a line using discrete pixels, the
main shortcoming of the described measures is their gener-
ality. They are geometric measures, defined in R × R, and
do not consider the discontinuities in discrete 2D space, as
defined by the cutting lines of two neighboring pixel rows or
two neighboring pixel columns. For our approach, we con-
sult the actual visualization to determine the approximation
quality of the data reduction operators.

Visualization Quality. Two images of the same size
can be easily compared pixel by pixel. A simple, com-
monly applied error measure is the mean square error MSE
= 1

wh

∑w
x=1

∑h
y=1(Ix,y(V1) − Ix,y(V2))2, with Ix,y defining

the luminance value of a pixel (x, y) of a visualization V .
Nonetheless, Wang et al. have shown [27] that MSE-based

measures, including the commonly applied peak-signal-to-
noise-ratio (PSNR) [5], do not approximate the model of
human perception very well and developed the Structural
Similarity Index (SSIM). For brevity and due to the com-
plexity of this measure, we have to pass on without a detailed
description of this measure. The SSIM yields a similarity
value between 1 and −1. The related normalized distance
measure between two visualizations V1 and V2 is defined as:

DSSIM(V1, V2) =
1− SSIM(V1, V2)

2
(6)

We use DSSIM to evaluate the quality of a line visualization
that is based on a reduced time series data set, compar-
ing it with the original line visualization of the underlying
unreduced time series data set.

6. EVALUATION
In the following evaluation, we will compare the data re-
duction efficiency of the M4 aggregation with state-of-the-
art line simplification approaches and with commonly used
naive approaches, such as averaging, sampling, and round-
ing. Therefore, we apply all considered techniques to several
real world data sets and measure the resulting visualization
quality. For all aggregation-based data reduction operators,
which can be expressed using the relational algebra, we also
evaluate the query execution performance.

6.1 Real World Time Series Data
We consider three different data sets: the price of a single
share on the Frankfurt stock exchange over 6 weeks (700k
tuples), 71 minutes from a speed sensor of a soccer ball
[22](ball number 8, 7M rows), and one week of sensor data
from an electrical power sensor of a semiconductor manufac-
turing machine [15](sensor MF03, 55M rows). In Figure 11,
we show excerpts of these data sets to display the differences
in time and value distribution.

t

electrical power

P (W)

c)

€

t

stock pricea)

v (µm/s)

t

ball speedb)

Figure 11: a) financial, b) soccer, c) machine data.

For example, the financial data set (a) contains over 20000
tuples per working day, with the share price changing only
slowly over time. In contrast to that the soccer data set (b)
contains over 1500 readings per second and is best described
as a sequence of bursts. Finally, the machine sensor data (c)
at 100Hz constitutes a mixed signal that has time spans of
low, high, and also bursty variation.

6.2 Query Execution Performance
In Section 4, we described how to express simple sampling or
aggregation-based data reduction operators using relational
algebra, including our proposed M4 aggregation. We now
evaluate the query execution performance of these different
operators. All evaluated queries were issued as SQL queries

803

Figure 12: Query performance: (a,b,c,d) financial data, (e,f) soccer data, (g,h) machine data.

via ODBC over a (100Mbit) wide area network to a virtu-
alized, shared SAP HANA v1.00.70 instance, running in an
SAP data center at a remote location.

The considered queries are: 1) a baseline query that se-
lects all tuples to be visualized, 2) a PAA-query that com-
putes up to 4 ·w average tuples, 3) a two-dimensional round-
ing query that selects up to w ·h rounded tuples, 4) a strati-
fied random sampling query that selects 4 ·w random tuples,
5) a systematic sampling query that selects 4 ·w first tuples,
6) a MinMax query that selects the two min and max tu-
ples from 2 ·w groups, and finally 7) our M4 query selecting
all four extrema from w groups. Note that we adjusted the
group numbers to ensure a fair comparison at similar data
reduction rates, such that any reduction query can at most
produce 4 · w tuples. All queries are parametrized using a
width w = 1000, and (if required) a height h = 200.

In Figure 12, we plot the corresponding query execution
times and total times for the three data sets. The total time
measures the time from issuing the query to receiving all
results at the SQL client. For the financial data set, we first
selected three days from the data (70k rows). We ran each
query 20 times and obtain the query execution times, shown
in Figure 12a. The fastest query is the baseline query, as it is
a simple selection without additional operators. The other
queries are slower, as they have to compute the additional
data reduction. The slowest query is the rounding query,
because it groups the data in two dimensions by w and h.
The other data reduction queries only require one horizontal
grouping. Comparing these execution times with the total
times in Figure 12b, we see the baseline query losing its
edge in query execution, ending up one order of magnitude
slower than the other queries. Even for the low number of
70k rows, the baseline query is dominated by the additional
data transport time. Regarding the resulting total times, all
data reduction queries are on the same level and manage to
stay below one second. Note that the M4 aggregation does
not have significantly higher query execution times and total
times than the other queries. The observations are similar

when selecting 700k rows (30 days) from the financial data
set (Figure 12c and 12d). The aggregation-based queries,
including M4, are overall one order of magnitude faster than
the baseline at a negligible increase of query execution time.

Our measurements show very similar results when running
the different types of data reduction queries on the soccer
and machine data sets. We requested 1400k rows from the
soccer data set, and 3600k rows from the machine data set.
The results in Figure 12(e–h) again show an improvement
of total time by up to one order of magnitude.

number of underlying rows

to
ta

l t
im

e
(s

)

Figure 13: Performance with varying row count.

We repeated all our tests, using a Postgres 8.4.11 RDBMS
running on an Xeon E5-2620 with 2.00GHz, 64GB RAM,
1TB HDD (no SSD) on Red Hat 6.3, hosted in the same
data center as the HANA instances. All data was served
from a RAM disk. The Postgres working memory was set
to 8GB. In Figure 13, we show the exemplary results for
the soccer data set, plotting the total time for increasing,
requested time spans, i.e., increasing number of underlying
rows. We again observe the baseline query heavily depend-
ing on the limited network bandwidth. The aggregation-
based approaches again perform much better. We made
comparable observations with the finance data set and the
machine data set.

The results of both the Postgres and the HANA system
show that the baseline query, fetching all rows, mainly de-
pends on the database-outgoing network bandwidth. In con-

804

a) M4 and MinMax vs. Aggregation b) M4 and MinMax vs. Line Simplification

I
b
in
ar
y

round2d

nh=w nh=2*w

number of tuples number of tuples

I I
a

n
ti

-a
li
a

se
d

number of tuples number of tuples

Figure 14: Data efficiency of evaluated techniques, showing DSSIM over data volume.

trast, the size of the result sets of all aggregation-based
queries for any amount of underlying data is more or less
constant and below 4·w. Their total time mainly depends on
the database-internal query execution time. This evaluation
also shows that our proposed M4 aggregation is equally fast
as common aggregation-based data reduction techniques.
M4 can reduce the time the user has to wait for the data by
one order of magnitude in all our scenarios, and still provide
the correct tuples for high quality line visualizations.

6.3 Visualization Quality and Data Efficiency
We now evaluate the robustness and the data efficiency re-
garding the achievable visualization quality. Therefore, we
test M4 and the other aggregation techniques using different
numbers of horizontal groups nh. We start with nh = 1 and
end at nh = 2.5 ·w. Thereby we want to select at most 10 ·w
rows, i.e., twice as much data as is actually required for an
error-free two-color line visualization. Based on the reduced
data sets we compute an (approximating) visualization and
compare it with the (baseline) visualization of the original
data set. All considered visualizations are drawn using the
open source Cairo graphics library (cairographics.org). The
distance measure is the DSSIM, as motivated in Section 5.
The underlying original time series of the evaluation sce-
nario are 70k tuples (3 days) from the financial data set.
The related visualization has w = 200 and h = 50. In the
evaluated scenario, we allow the number of groups nh to be
different than the width w of the visualization. This will
show the robustness of our approach. However, in a real im-
plementation, the engineers have to make sure that nh = w
to achieve the best results. In addition to the aggregation-
based operators, we also compare our approach with three
different line simplification approaches, as described in Sec-
tion 5. We use the Reumann-Wikham algorithm (reuwi)
[24] as representative for sequential line simplification, the
top-down Ramer-Douglas-Peucker (RDP) algorithm [6, 14],
and the bottom-up Visvalingam-Whyatts (visval) algorithm
[26]. The RDP algorithm, does not allow setting a desired
data reduction ratio, thus we precomputed the minimal ε
that would produce a number of tuples proportional to the
considered nh.

In Figure 14, we plot the measured, resulting visualization
quality (DSSIM) over the resulting number of tuples of each
different groupings nh = 1 to nh = 2.5 ·w of an applied data
reduction technique. For readability, we cut off all low qual-
ity results with DSSIM < 0.8. The lower the number of
tuples and the higher the DSSIM, the more data efficient is
the corresponding technique for the purpose of line visuali-
zation. The Figures 14aI and 14bI depict these measures for
binary line visualizations and the Figures 14aII and 14bII
for anti-aliased line visualizations. We now observe the fol-
lowing results.

Sampling and Averaging operators (avg, first, and sran-
dom) select a single aggregated value per (horizontal) group.
They all show similar results and provide the lowest DSSIM.
As discussed in Section 4, they will often fail to select the
tuples that are important for line rasterization, i.e., the min,
max, first, and last tuples that are required to set the correct
inner-column and inter-column pixels.

2D-Rounding requires an additional vertical grouping
into nv groups. We set nv = w/h ·nh to a have proportional
vertical grouping. The average visualization quality of 2D-
rounding is higher than that of averaging and sampling.

MinMax queries select min(v) and max(v) and the cor-
responding timestamps per group. They provide very high
DSSIM values already at low data volumes. On average,
they have a higher data efficiency than all aggregation based
techniques, (including M4, see Figure 14a), but are partially
surpassed by line simplification approaches (see Figure 14b).

Line Simplification techniques (RDP and visval) on av-
erage provide better results than the aggregation-based tech-
niques (compare Figures 14a and 14b). As seen previously
[25], top-down (RDP) and bottom-up (visval) algorithms
perform much better than the sequential ones (reuwi). How-
ever, in context of rasterized line visualizations they are sur-
passed by M4 and also MinMax at nh = w and nh = 2 · w.
These techniques often miss one of the min, max, first, or last
tuples, because these tuples must not necessarily comply to
the geometric distance measures used for line simplification,
as described in Section 5.

M4 queries select min(v), max(v), min(t), max(t) and
the corresponding timestamps and values per group. On av-
erage M4 provides a visualization quality of DSSIM > 0.9

805

http://cairographics.org

but is usually below MinMax and the line simplification
techniques. However, at nh = w, i.e., at any factor k of w,
M4 provides perfect (error-free) visualizations. Any group-
ing with nh = k ·w and k ∈ N+ also includes the min, max,
first, and last tuples for nh = w.

Anti-aliasing. The observed results for binary visuali-
zation (Figures 14I) and anti-aliased visualizations (Figures
14II) are very similar. The absolute DSSIM values for anti-
aliased visualizations are even better than for binary ones.
This is caused by a single pixel error in a binary visualization
implying a full color swap from one extreme to the other,
e.g., from back (0) to white (255). Pixel errors in anti-aliased
visualization are less distinct, especially in overplotted areas,
which are common for high-volume time series data. For ex-
ample, a missing line will often result in a small increase in
brightness, rather than a complete swap of full color values,
and an additional false line will result in a small decrease in
brightness of a pixel.

6.4 Evaluation of Pixel Errors
A visual result of M4, MinMax, RDP, and averaging (PAA),
applied to 400 seconds (40k tuples) of the machine data
set, is shown in Figure 15. We use only 100×20 pixels for
each visualization to reveal the pixel errors of each opera-
tor. M4 thereby also presents the error-free baseline image.
We marked the pixel errors for MinMax, RDP, and PAA;
black represents additional pixels and white the missing pix-
els compared to the base image.

M4/Baseline

PAA

MinMax

RDP

Figure 15: Projecting 40k tuples to 100x20 pixels.

We see how MinMax draws very long, false connection lines
(right of each of the three main positive spikes of the chart).
MinMax also has several smaller errors, caused by the same
effect. In this regard, RDP is better, as the distance of the
not selected points to a long, false connection line is also very
high, and RDP will have to split this line again. RDP also
applies a slight averaging in areas where the time series has
a low variance, since the small distance between low varying
values also decreases the corresponding measured distances.
The most pixel errors are produced by the PAA-based data
reduction, mainly caused by the averaging of the vertical
extrema. Overall, MinMax results in 30 false pixels, RDP
in 39 false pixels, and PAA in over 100 false pixels. M4 stays
error-free.

Relational
System

Data Reduction
System

data

Visualization
Client

C) additional
 reduction

pixels pixelsB) image-
 based

data pixelsD) in-DB
 reduction

Q(T)

Q(T)

QR(Q(T))

A) without
 reduction

Q(T)

data pixels

DATA pixels

Inter-
acivity

Band-
width

++ – –

+

+ ++

+

–

System
Type

+

Figure 16: Visualization system architectures.

6.5 Data Reduction Potential
Let us now go back to the motivating example in Section 1.
For the described scenario, we expected 100 users trying to
visually analyze 12 hours of sensor data, recorded at 100Hz.
Each user has to wait for over 4 Million rows of data until
he or she can examine the sensor signal visually. Assuming
that the sensor data is visualized using a line chart that
relies on an M4-based aggregation, and that the maximum
width of a chart is w = 2000 pixels. Then we know that
M4 will at most select 4 · w = 8000 tuples from the time
series, independent of the chosen time span. The resulting
maximum amount of tuples, required to serve all 100 users
with error-free line charts, is 100users ·8000 = 800000 tuples;
instead of previously 463 million tuples. As a result, in this
scenario we achieve a data reduction ratio of over 1 : 500.

7. RELATED WORK
In this section, we discuss existing visualization systems and
provide an overview of related data reduction techniques,
discussing the differences to our approach.

7.1 Visualization Systems
Regarding visualization-related data reduction, current state-
of-the-art visualization systems and tools fall into three cat-
egories. They (A) do not use any data reduction, or (B)
compute and send images instead of data to visualization
clients, or (C) rely on additional data reduction outside of
the database. In Figure 16, we compare these systems to
our solution (D), showing how each type of system applies
and reduces a relational query Q on a time series relation T .
Note that thin arrows indicate low-volume data flow, and
thick arrows indicate that raw data needs to be transferred
between the system’s components or to the client.

Visual Analytics Tools. Many visual analytics tools
are systems of type A that do not apply any visualization-
related data reduction, even though they often contain state-
of-the-art (relational) data engines [28] that could be used
for this purpose. For our visualization needs, we already
evaluated four common candidates for such tools: Tableau
Desktop 8.1 (tableausoftware.com), SAP Lumira 1.13 (sap-

lumira.com), QlikView 11.20 (clickview.com), and Datawatch
Desktop 12.2 (datawatch.com). But none of these tools was
able to quickly and easily visualize high-volume time series
data, having 1 million rows or more. Since all tools allow
working on data from a database or provide a tool-internal
data engine, we see a great opportunity for our approach
to be implemented in such systems. For brevity, we cannot
provide a more detailed evaluation of these tools.

806

http://tableausoftware.com
http://saplumira.com
http://saplumira.com
http://clickview.com
http://datawatch.com

Client-Server Systems. The second system type B is
commonly used in web-based solutions, e.g., financial web-
sites like Yahoo Finance (finance.yahoo.com) or Google Fi-
nance (google.com/finance). Those systems reduce the data
volumes by generating and caching raster images, and send-
ing those instead of the actual data for most of their smaller
visualizations. Purely image-based systems usually provide
poor interactivity and are backed with a complementary sys-
tem of type C, implemented as a rich-client application that
allows exploring the data interactively. Systems B and C
usually rely on additional data reduction or image gener-
ation components between the data engine and the client.
Assuming a system C that allows arbitrary non-aggregating
user queries Q, they will regularly need to transfer large
query results from the database to the external data re-
duction components. This may consume significant system-
internal bandwidth and heavily impact the overall perfor-
mance, as data transfer is one of the most costly operations.

Data-Centric System. Our visualization system (type
D) can run expensive data reduction operations directly in-
side the data engine and still achieve the same level of in-
teractivity as provided by rich-client visualization systems
(type C). Our system rewrites the original query Q, using
additional the data reduction operators, producing a new
query QR. When executing the new query, the data en-
gine can then jointly optimize all operators in one single
query graph, and the final (physical) operators can all di-
rectly access the shared in-memory data without requiring
additional, expensive data transfer.

7.2 Data Reduction
In the following we give an overview on common data re-
duction methods and how they are related to visualizations.

Quantization. Many visualization systems explicitly or
implicitly reduce continuous times-series data to discrete
values, e.g., by generating images, or simply by rounding
the data, e.g., to have only two decimal places. A rounding
function is a surjective function and does not allow correct
reproduction of the original data. In our system we also con-
sider lossy, rounding-based reduction, and can even model it
as relational query, facilitating a data-centric computation.

Time Series Representation. There are many works
on time series representations [9], especially for the task of
data mining [11]. The goal of most approaches is, similar
to our goal, to obtain a much smaller representation of a
complete time series. In many cases, this is accomplished
by splitting the time series (horizontally) into equidistant or
distribution-based time intervals and computing an aggre-
gated value (average) for each interval [18]. Further reduc-
tion is then achieved by mapping the aggregates to a limited
alphabet, for example, based on the (vertical) distribution
of the values. The results are, e.g., character sequences or
lists of line segments (see Section 5) that approximate the
original time series. The validity of a representation is then
tested by using it in a data mining tasks, such as time-
series similarity matching [29]. The main difference of our
approach is our focus on relational operators and our incor-
poration of the semantics of the visualizations. None of the
existing approaches discussed the related aspects of line ras-
terization that facilitate the high quality and data efficiency
of our approach.

Offline Aggregation and Synopsis. Traditionally, ag-
gregates of temporal business data in OLAP cubes are very

coarse grained. The number of aggregation levels is lim-
ited, e.g., to years, months, and days, and the aggregation
functions are restricted, e.g., to count, avg, sum, min, and
max. For the purpose of visualization, such pre-aggregated
data might not represent the raw data very well, especially
when considering high-volume time series data with a time
resolution of a few milliseconds. The problem is partially
mitigated by the provisioning of (hierarchical or amnesic)
data synopsis [7, 13]. However, synopsis techniques again
rely on common time series dimensionality reduction tech-
niques [11], and thus are subject to approximation errors.
In this regard, we see the development of a visualization-
oriented data synopsis system that uses the proposed M4
aggregation to provide error-free visualizations as a chal-
lenging subject to future work.

Online Aggregation and Streaming. Even though
this paper focuses on aggregation of static data, our work
was initially driven by the need for interactive, real-time
visualizations of high-velocity streaming data [16]. Indeed,
we can apply the M4 aggregation for online aggregation,
i.e., derive the four extremum tuples in O(n) and in a single
pass over the input stream. A custom M4 implementation
could scan the input data for the extremum tuples rather
than the extremum values, and thus avoid the subsequent
join, as required by the relational M4 (see Section 4.2).

Data Compression. We currently only consider data
reduction at the application level. Any additional transport-
level data reduction technique, e.g., data packet compres-
sion or specialized compression of numerical data [20, 11], is
complementary to our data reduction.

Content Adaptation. Our approach is similar to con-
tent adaptation in general [21], which is widely used for
images, videos, and text in web-based systems. Content
adaptation is one of our underlying ideas that we extended
towards a relational approach, with a special attention of
the semantics of line visualizations.

Statistical Approaches. Statistical databases [1] can
serve approximate results. They serve highly reduced ap-
proximate answers to user queries. Nevertheless, these an-
swers cannot very well represent the raw data for the pur-
pose of line visualization, since they apply simple random
or systematic sampling, as discussed in Section 4. In theory,
statistical databases could be extended with our approach,
to serve for example M4 or MinMax query results as ap-
proximating answers.

7.3 Visualization-Driven Data Reduction
The usage of visualization parameters for data reduction has
been partially described by Burtini et al. [3], where they use
the width and height of a visualization to define parameters
for some time series compression techniques. However, they
describe a client-server system of type C (see Figure 16),
applying the data reduction outside of the database. In our
system, we push all data processing down to database by
means of query rewriting. Furthermore, they use an average
aggregation with w groups, i.e., only 1 ·w tuples, as baseline
and do not consider the visualization of the original time
series. Thereby, they overly simplify the actual problem
and the resulting line charts will lose important detail in
the vertical extrema. They do not appropriately discuss the
semantics of rasterized line visualizations.

807

http://finance.yahoo.com
http://google.com/finance

8. CONCLUSION
In this paper, we introduced a visualization-driven query
rewriting technique that facilitates a data-centric time se-
ries dimensionality reduction. We showed how to enclose
all visualization-related queries to an RDBMS within addi-
tional data reduction operators. In particular, we considered
aggregation-based data reduction techniques and described
how they integrate with the proposed query-rewriting.

Focusing on line charts, as the predominant form of time
series visualizations, our approach exploits the semantics of
line rasterization to drive the data reduction of high-volume
time series data. We introduced the novel M4 aggregation
that selects the min, max, first, and last tuples from the time
spans corresponding to the pixel columns of a line chart.
Using M4 we were able to reduce data volumes by two orders
of magnitude and latencies by one order of magnitude, while
ensuring pixel-perfect line visualizations.

In the future, we want to extend our current focus on
line visualizations to other forms of visualization, such as
bar charts, scatter plots and space-filling visualizations. We
aim to provide a general framework for data-reduction that
considers the rendering semantics of visualizations. We hope
that this in-depth, interdisciplinary database and computer
graphics research paper will inspire other researchers to in-
vestigate the boundaries between the two areas.

9. REFERENCES
[1] S. Agarwal, A. Panda, B. Mozafari, A. P. Iyer,

S. Madden, and I. Stoica. Blink and it’s done:
Interactive queries on very large data. PVLDB,
5(12):1902–1905, 2012.

[2] J. E. Bresenham. Algorithm for computer control of a
digital plotter. IBM Systems journal, 4(1):25–30, 1965.

[3] G. Burtini, S. Fazackerley, and R. Lawrence. Time
series compression for adaptive chart generation. In
CCECE, pages 1–6. IEEE, 2013.

[4] J. X. Chen and X. Wang. Approximate line
scan-conversion and antialiasing. In Computer
Graphics Forum, pages 69–78. Wiley, 1999.

[5] David Salomon. Data Compression. Springer, 2007.

[6] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to
represent a digitized line or its caricature.
Cartographica Journal, 10(2):112–122, 1973.

[7] Q. Duan, P. Wang, M. Wu, W. Wang, and S. Huang.
Approximate query on historical stream data. In
DEXA, pages 128–135. Springer, 2011.

[8] S. G. Eick and A. F. Karr. Visual scalability. Journal
of Computational and Graphical Statistics,
11(1):22–43, 2002.

[9] P. Esling and C. Agon. Time-series data mining. ACM
Computing Surveys, 45(1):12–34, 2012.

[10] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd,
S. Sigg, and W. Lehner. SAP HANA Database-Data
Management for Modern Business Applications.
SIGMOD Record, 40(4):45–51, 2012.

[11] T. Fu. A review on time series data mining. EAAI
Journal, 24(1):164–181, 2011.

[12] T. Fu, F. Chung, R. Luk, and C. Ng. Representing
financial time series based on data point importance.
EAAI Journal, 21(2):277–300, 2008.

[13] S. Gandhi, L. Foschini, and S. Suri. Space-efficient
online approximation of time series data: Streams,
amnesia, and out-of-order. In ICDE, pages 924–935.
IEEE, 2010.

[14] J. Hershberger and J. Snoeyink. Speeding up the
Douglas-Peucker line-simplification algorithm.
University of British Columbia, Department of
Computer Science, 1992.

[15] Z. Jerzak, T. Heinze, M. Fehr, D. Gröber, R. Hartung,
and N. Stojanovic. The DEBS 2012 Grand Challenge.
In DEBS, pages 393–398. ACM, 2012.

[16] U. Jugel and V. Markl. Interactive visualization of
high-velocity event streams. In VLDB PhD Workshop.
VLDB Endowment, 2012.

[17] D. A. Keim, C. Panse, J. Schneidewind, M. Sips,
M. C. Hao, and U. Dayal. Pushing the limit in visual
data exploration: Techniques and applications. Lecture
notes in artificial intelligence, (2821):37–51, 2003.

[18] E. J. Keogh and Pazzani. A simple dimensionality
reduction technique for fast similarity search in large
time series databases. In PAKDD, pages 122–133.
Springer, 2000.

[19] A. Kolesnikov. Efficient algorithms for vectorization
and polygonal approximation. University of Joensuu,
2003.

[20] P. Lindstrom and M. Isenburg. Fast and efficient
compression of floating-point data. In TVCG,
volume 12, pages 1245–1250. IEEE, 2006.

[21] W.-Y. Ma, I. Bedner, G. Chang, A. Kuchinsky, and
H. Zhang. A framework for adaptive content delivery
in heterogeneous network environments. In Proc.
SPIE, Multimedia Computing and Networking, volume
3969, pages 86–100. SPIE, 2000.

[22] C. Mutschler, H. Ziekow, and Z. Jerzak. The DEBS
2013 Grand Challenge. In DEBS, pages 289–294.
ACM, 2013.

[23] P. Przymus, A. Boniewicz, M. Burzańska, and
K. Stencel. Recursive query facilities in relational
databases: a survey. In DTA and BSBT, pages 89–99.
Springer, 2010.

[24] K. Reumann and A. P. M. Witkam. Optimizing curve
segmentation in computer graphics. In Proceedings of
the International Computing Symposium, pages
467–472. North-Holland Publishing Company, 1974.

[25] W. Shi and C. Cheung. Performance evaluation of line
simplification algorithms for vector generalization.
The Cartographic Journal, 43(1):27–44, 2006.

[26] M. Visvalingam and J. Whyatt. Line generalisation by
repeated elimination of points. The Cartographic
Journal, 30(1):46–51, 1993.

[27] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, 2004.

[28] R. Wesley, M. Eldridge, and P. Terlecki. An analytic
data engine for visualization in tableau. In SIGMOD,
pages 1185–1194. ACM, 2011.

[29] Y. Wu, D. Agrawal, and A. El Abbadi. A comparison
of DFT and DWT based similarity search in timeseries
databases. In CIKM, pages 488–495. ACM, 2000.

808

